Report

Report

INDEX

1. INTRODUCTION – 6

2. GROUP A – 8

A.1- INTRODUCTION AND GROUP STRUCTURE – 9

      A.1.1- Project Objectives and Calculated Variables – 9
         A.1.1.1- Subjective and Objective Assessment – 9
            A.1.1.1.1- Vehicle Handling – 11
            A.1.1.1.2- Frequency Response Test – 12
         A.1.1.2- Group Function – 13
            A.1.1.2.1- Models – 14
               A.1.1.2.1.1- Simple Model – 14
               A.1.1.2.1.2- Full Model – 15
               A.1.1.2.1.3-Steering Wheel Torque – 15
               A.1.1.2.1.4- CARSIMED – 15
            A.1.1.2.2- Modifications – 16
         A.1.1.3- Links with Other Groups -16

A.2- Description of the models – 18

       A.2.1- Quick description – 18
         A.2.1.1-The simple model – 18
            A.2.1.1.1- The roll axis assumption – 18
            A.2.1.1.2- The construction of the model – 19
            A.2.1.1.3- The forces applications assumptions – 21
         A.2.1.2- The full model – 24
             A.2.1.2.1- The construction of the model – 24
      A.2.2- The reasons to keep two models – 26
      A.2.3- Explanations about the linear and non-linear analysis -27

A.3- Description of the improvements – 29

A.3.1- Identification of the sources of errors – 29
         A.3.1.1- List of the potential sources of errors – 29
      A.3.2- Improvements chosen – 30

A.3.2.1- Body stiffness – 30

A.3.2.2- Mechanical trail, pneumatic trail and caster angle – 31

A.3.2.3- Variation of the speed during the test – 33

A.3.2.4- Tyre relaxation – 34

A.3.2.4- Scrub derivative – 37

A.4-STEERING INPUT – 42

A.4.1- The linear model – 42
        A.4.2- The non-linear model – 42
        A.4.3- Defining the shape of the Steering input signal – 43
        A.4.4- Using Experimental Steering input signal -48

A.5- Comparison between the Full Model and the Simple Model – 50

A.5.1- Lateral Acceleration – Gain – 53
     A.5.2- Lateral acceleration – Phase – 54
     A.5.3- Roll rate – Gain – 54
     A.5.4- Yaw rate Gain & Phase – 54
     A.5.5- Conclusion – 55

A.6- Sensitivity Trials for the Full Model – 56

A.6.1- Nominal Values – 57
     A.6.2- Changed values – 57
     A.6.3- Conclusion – 80

A.7- Overall conclusion for Group A – 81

     A.7.1- Future work – 81
        A.7.1.1- Some parameters have not been considered in the model – 82

A.7.1.2- Detailed study of frequency response curves – 82

3. GROUP B – 83

B.1-MEASUREMENT OF THE WHEEL INERTIA ABOUT ITS SPIN AXIS – 84
      B.1.1-Description of the experimen – 84
      B.1.2-Data, Formula and Results – 84

B.2-REPARTITION OF THE WEIGHT ON THE WHEEL AXIS – 86

     B.2.1-Settings – 86
     B.2.2-Electronic scales – 86
     B.2.3-Measurements – 87
     B.2.4-Exploitation of the results: determination of the center of mass. – 88

B.3-Rolling Radius – 90

      B.3.1-Introduction – 90
      B.3.2-Method – 90
      B.3.3-Results – 92
          B.3.3.4-Discussion -92

B.4-CAMBER AND CASTOR ANGLES, PNEUMATIC TRAIL AND
KING PIN INCLINATION
– 94

      B.4.1-Camber angle – 94

B.4.2-Castor angle – 95

B.4.3-Pneumatic trail – 97

B.4.4-King pin inclination – 97

B.4.5-Discussion – 97

B.5-MECHANICAL TRAIL – 98

B.6-SUSPENSION DERIVATIVES – 100

      B.6.1-Set up – 100

B.6.2-Results – 101

B.6.3-Conclusion – 103

B.7-SUSPENSION DERIVATIVES (II) – 104

B.8-Steering gear ratio – 107

      B.8.1-Introduction – 107

B.8.2-Method – 107

B.9-CORNERING STIFFNESS – 110

B.10-FRONT ROLL STIFFNESS -113
     B.10.1-Introduction – 113

B.10.2-Method – 113

B.10.3-Discussion – 114

B.11-SUSPENSION DAMPING FACTOR – 116
    B.11.1-Requirement to perform the test – 116

B.11.2-Front axle damping – 116

B.11.3-Rear axle Damping – 125

4. GROUP C 128

C.1-INTRODUCTION – 129

C.2-YAW AND ROLL RATE GYROSCOPES – 131

    C.2.1-Background about gyroscopes – 131
    C.2.2- Procedure for calibrating the gyros – 132

C.2.2.1- Construction of the pendulum – 133
       C.2.2.2- Fitting the gyros on the pendulum – 133
       C.2.2.3- Mathematical approach for calibrating the gyroscopes – 137

C.3-LATERAL AND LONGITUDINAL ACCELERATIONS – 143

C.3.1-Expectation and choice of the accelerometer – 143
      C.3.1.1- Our main accelerometer performances are – 143

C.3.2- Calibration of the linear accelerometer – 144

C.3.2.1-Power supply and acquisition chain – 149

C.3.3- Mounting of the accelerometer -149

C.4-STEERING ANGLE MEASUREMENT – 150
    C.4.1-Requirements -150

C.4.2-Potentiometer choice and specifications – 152

C.4.3-Potentiometer mounting – 153
    C.4.4-Potentiometer calibration – 154

C.5-POWER SUPPLY – 156

C.5.1-First approach – 156
        C.5.1.1- High voltage supply -156
        C.5.1.2- Low voltage supply – 156

C.5.2-second approach – 160

C.6- THE DATA ACQUISITION SYSTEM – 162
   C.6.1- Introduction – 162
   C.6.2- Steps of data acquisition -163

C.6.2.1- DBK18 – Signal Conditioning – 164

C.6.2.2 DaqBook -166
      C.6.2.3 DaqView – Software – 167
      C.6.3- Aliasing – 170

 

5. GROUP D – 171

D.1- Summary – 172

D.2-Introduction – 173

D.2.1-What is signal processing and why do we need it for this application?      – 173

D.2.2-Role of signal processing group within the assignment – 175

D.3- Background to frequency analysis – 178

D.4- Matlab programs – 181

D.5- Results from the airfield test – 186

D.6- Carsim educational – 194
   D.6.1-CarSimEd  – 194

D.6.1.1- Construction of the vehicle model in Carsimed – 195

D.6.1.2- Simulation of the tests using Carsimed – 198

D.7-Achievements of the Group – 206

D.8-Dynamics 2001 Graphic User Interface – 207

D.8.1-Introduction – 207

D.8.1-GUI Description – 208

6. PROJECT MANAGEMENT – 215

6.1 Creation of the Management Team – 215

6.2 Groups and Tasks -216

6.3 Evolution of the Project – 218

6.4 Communication – 226

6.5 conclusions – 226

7. Airfield test – 227

7.1 Considerations  – 228

7.1.1 Conditions of the test –  230

7.2 The pre-test – 230

7.3 The Test – 231

8. Final comparisons – 234

8.1 Summary of the features of all cases –  241
8.2 Comparisons between models and airfield test – 242
8.3 Comparison between laden and unladen cases – 243

9. Conclusions – 244

Appendix – 245

A 1.- Group A. hierarcical structure of the simple model

A 2.- group a. hierarcical structure of the full model

A 3.- group a. AUTOSIM code

A 4.- group b. addendum

A 5.- group c. instruments specifications

A 6.- group d. Matlab files

A7.- management team. minutes meetings

Deja una respuesta

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Scroll al inicio

Descarga libro gratis de gestión del tiempo

Con el libro Recupera tu vida. Gestiona tu tiempo y energía, aprenderás no sólo a gestionar tu tiempo, sino a gestionar tu vida. Aprenderás cómo gestionar tu tiempo y tu vida para que dediques más tiempo a las cosas que realmente son importantes y así consigas cualquier objetivo que te marques y seas más feliz.

Popup